Quiz 6 – revision of redox and galvanic cells.

- 1. Consider the galvanic cell shown on the right.
 - a. What is the theoretical EMF produced by the cell if it is run at standard conditions. +1.77 -0.77 = 2.54 V
 - b. Write the half equations to each half-cell in the space provided.
 - c. On the diagram label the:
 - i. Direction of electron flow.
 - ii. Direction of positive ions flow from the salt bridge
 - iii. Anode and give its polarity
 - iv. Cathode and give its polarity.

No change in the mass of electrode "A" but a decrease in the mass of the anode (Fe)

- e. What material should electrode "A" be made from? Carbon or platinum
- 2. Below are two redox equations. For each equation identify the :
 - atom being reduced (justify your answer using oxidation numbers)
 - atom being oxidised (justify your answer using oxidation numbers)
 - oxidant
 - reductant

a.
$$IO_3^{-}(aq) + 2H_2O_2(aq) + H^+(aq) \rightarrow HOI(aq) + 2O_2(g) + 2H_2O(l)$$

The iodine atom (I) in IO_3^- has an oxidation state of +5 and is reduced to +1 in HOI. While the oxygen atom in H_2O_2 has an oxidation state of -1 and is oxidised to 0 in O_2 .

b. $C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

The carbon atom (C) in C_2H_6 has an oxidation state of +3 and is oxidised to +4 in CO₂. While the oxygen atom in O₂ has an oxidation state of 0 and is reduced to -2 in both CO₂ and H_2O .

- 3. Give the oxidation number of the underlined atoms in each of the following substances.
 - a. $MnO_4 => Mn + 4X 2 = 0 => Mn = +8$
 - b. $H_2O_2 \implies 2O + 2X + 1 = 0 \implies O = -1$
 - c. $Mg(OH)_2 => Mg + (-2 + 1) X 2 = 0 => Mg = +2$
 - d. <u>Cr</u>O₄=> Cr + 4 X 2 = 0 => Cr = +8
 - e. <u>C</u>₃H₈O=> 3C + 8 -2 = 0 => C = +2

- 4. Consider the following unbalanced redox reactions. Write balanced half equations for each, states not included, and identify each one as either an oxidation or reduction.
 - a. $2H^+ + 2e^- + Cr_2O_3 \rightarrow 2CrO + H_2O$ ------ reduction (electrons accepted) Cr (+3) in Cr_2O_3 is reduced to an oxidation state of +2 in CrO.
 - **b.** $5e + 6H^+ + MnO_4^- \rightarrow MnO + 3H_2O$ ------ reduction (electrons accepted) Mn (+7) in MnO_4^- is reduced to an oxidation state of +2 in MnO
 - c. $2e + 2H^* + H_2O_2 \rightarrow 2H_2O$ ------ reduction (electrons accepted) O (-1) in H_2O_2 is reduced to an oxidation state of -2 in H_2O
- 5. Using the E^o series shown on the right predict if a spontaneous reaction will occur when:
 - i. Tin(Sn) metal is placed in a 0.1 M $AgNO_3$ solution. Yes
 - ii. Pure manganese metal is placed in a solution of 0.2M Al(NO₃)₃
 No reaction
 - iii. Nickel metal is placed in a solution of $Fe(NO_3)_3$. Yes
 - iv. Lithium metal is placed in a 1.0 M solution of Zn(NO₃)₂. Yes
 - v. Iron metal is placed in a 0.10 M HCl solution. Yes
 - vi. Magnesium metal is placed in a 1.0M HCl solution. Yes
- 6. For each spontaneous reaction that occurs in question 5, above, give the
 - i. oxidant and reductant taking part in the reaction
 - ii. Write the balanced half equations, with states
 - iii. Write the balanced overall equation, with states.

Tin(Sn) metal is placed in a 0.1 M AgNO₃ solution.

Sn(s) is the reductant Ag⁺(aq) is the oxidant. Ag⁺(aq) + $e \rightarrow Ag(s) - reduction$ Sn(s) $\rightarrow Sn^{2+}(aq) + 2e - oxidation$ $2Ag^{+}(aq) + Sn(s) \rightarrow Sn^{2+}(aq) + 2Ag(s)$

Reaction	Standard electrode (E ⁰) in volts at
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^*(aq) + 2e^- \implies 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br(aq)$	+1.09
$Ag^+(aq) + c^- = Ag(s)$	+0.80
$Fe^{1+}(aq) + e^- \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(q) \ge 2H^4(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$l_2(s) + 2c^- \Rightarrow 2l^-(aq)$	+0.54
$O_2(g) = 2d_2O(l) + 4e^- \implies 4OH^-(aq)$	+0.40
Cu ²⁺ (aq) + 2c ⁻ v [±] Cu(s)	+0.34
$Sn^{4+}(aq) + 2d \rightleftharpoons Sn^{2+}(aq)$	+0.15
$S(s) + 2H^+(tq) + 2e^- \rightleftharpoons H_2S(g)$	+0.14
$2H^{+}(ar) + 2c^{+} = H_{2}(g)$	0.00
$(b^{2+}(a_1) + 2c) \neq Pb(s)$	-0.13
Sn ⁺ (aq) 2e ⁻ En(s)	-0.14
$Ni^{2+}(sq) + 2c^- = Ni(s)$	-0.23
$Co^{2+}(aq) + 2c^{-} \triangleq Co(s)$	-0.28
$Fe^{2+}(aq) \rightarrow 2e^- \Rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) \vdash 2c^- \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^{-1} = H_2(g) + 2OH^{-}(aq)$	-0.83
$Mn^{2+}(a_s) + 2e^- = Mn(s)$	-1.03
$M^{3+}(ac) \rightarrow 3c^{-} \Rightarrow M(s)$	-1.67
$Mg^{2+}(aq) + Qe^{-} \rightleftharpoons Mg(s)$	-2.34
$Na^{+}(aq) + e^{-} \implies Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \implies Ca(s)$	-2.87
$K^+(aq) + e^- \implies K(s)$	-2.93
Li+(aq) + e- = Li(s)	-3.02

Nickel metal is placed in a solution of $Fe(NO_3)_3$. Ni(s) = reductant, $Fe^{3+}(aq)$. is the oxidant

$$\begin{split} \text{Ni(s)} & \rightarrow \text{Ni}^{2+}(\text{aq}) + 2e - \text{oxidation} \\ \text{Fe}^{3+}(\text{aq}) + e & \rightarrow \text{Fe}^{2+}(\text{aq}) - \text{reduction} \\ \text{Ni(s)} + 2\text{Fe}^{3+}(\text{aq}) & \rightarrow 2\text{Fe}^{2+}(\text{aq}) + \text{Ni}^{2+}(\text{aq}) \end{split}$$

Lithium metal is placed in a 1.0 M solution of $Zn(NO_3)_2$. Li(s) = reductant, $Zn^{2+}(aq)_2$. is the oxidant

Li(s) → Li⁺ (aq) + e – oxidation Zn^{2+} (aq) + 2e → Zn(s) – reduction $2Li(s) + Zn^{2+}$ (aq) → $2Li^+$ (aq) + Zn(s)

Iron metal is placed in a 0.10 M HCl solution. Fe(s) = reductant, $H^+(aq)$ is the oxidant $Fe(s) \rightarrow Fe^{2+}(aq) + 2e - oxidation$ $2H^+(aq) + 2e \rightarrow H_2(g) - reduction$ $Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$

Magnesium metal is placed in a 1.0M HCl solution. Mg(s) = reductant, H⁺(aq) is the oxidant Mg(s) \rightarrow Mg²⁺(aq) + 2e – oxidation 2H⁺(aq) + 2e \rightarrow H₂(g) – reduction Fe(s) + 2H⁺(aq) \rightarrow Fe²⁺(aq) + H₂(g)